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Introduction

Introduction

We will discuss the topological dynamics of the automorphism groups
Aut(M) of metric structuresM, focused in:

• (approximate) ultrahomogeneous structures.
• the Extreme amenability (EA) of Aut(M), or the computation of its

universal minimal flow
• The relation between the (EA) of Aut(M) and the (approximate)

Ramsey properties of Age(M) (the KPT-correspondence).
• The “metric” theory for the case of Banach spaces.
• The Gurarij space and the Lp[0, 1]-spaces.
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Introduction

Part I: Basics

1 Topological Dynamics
Extreme Amenability, Universal Minimal Flows
UMF vs EA; how to prove EA

2 (Metric) Fraïssé Theory
First order structures
KPT correspondence; Structural Ramsey Properties
Structural Ramsey Theorems
Metric structures
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Introduction

Part II: An example of metric structures: Banach spaces

3 Fraïssé Banach spaces and Fraïssé Correspondence
Fraïssé correspondence
Fraïssé Banach spaces and ultrapowers

4 Approximate Ramsey Properties

5 KPT correspondence for Banach spaces

J. Lopez-Abad (UNED) Eaag WS2019 4 / 66



Introduction

Part III: Three Examples

6 Gurarij space
{`n
∞}n have have the (ARP)

The ARP of Finite dimensional Normed spaces
The ARP of Finite dimensional Normed spaces

7 Lp-spaces
Lp (sometimes) is a Fraïssé space
{`n

p} have the (ARP)
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Topological Dynamics Extreme Amenability, Universal Minimal Flows

Extreme Amenability

Let (G, ·, 1) be a topological group (that is, a group endowed with a topology
for which the operations (g, h) 7→ g · h and g 7→ g−1 are continuous).

Given a compact space K, a flow G y K is an algebraic action
((g · h) · x = g · (h · x), 1 · x = x) such that (g, x) 7→ g · x is continuous.

Definition
A topological group G is called extremely amenable (EA) when every
continuous action (flow) G y K on a compact K has a fixed point; that is,
there is p ∈ K such that g · p = p for all g ∈ G.

EA groups are amenable (G is amenable iff every affine flow G y K on a
compact convex space K has a fixed point).
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Topological Dynamics Extreme Amenability, Universal Minimal Flows

Universal Minimal Flow

Definition
A flow G y K is called minimal when every G-orbit is dense.

G y K is a universal minimal flow when for any minimal flow G y L there
is a continuous and onto G-mapping φ : K → L; that is φ(g · x) = g · φ(x).

Proposition
Universal Minimal flows exists and are unique, denoted byM(G).
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Topological Dynamics Extreme Amenability, Universal Minimal Flows

Universal Minimal Flow

Definition
A flow G y K is called minimal when every G-orbit is dense.
G y K is a universal minimal flow when for any minimal flow G y L there
is a continuous and onto G-mapping φ : K → L; that is φ(g · x) = g · φ(x).

Proposition
Universal Minimal flows exists and are unique, denoted byM(G).

We consider the commutative C∗-algebra of right uniformly con-
tinuous and bounded f : G → C, and represent it as C(S(G))
(Gelfand); any minimal flow of S(G) is G-isomorphic toM(G).
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Topological Dynamics Extreme Amenability, Universal Minimal Flows

Compute the Universal Minimal Flow

Proposition
A topological group G is extremely amenable if and only ifM(G) = {?}.

Question
Compute universal minimal flows.
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Topological Dynamics Extreme Amenability, Universal Minimal Flows

Examples of EA groups

1 The unitary group U of linear isometries of the separable infinite
dimensional Hilbert space H, endowed with its strong operator topology
SOT (i.e. the pointwise convergence topology) (Gromov-Milman);

2 The group Aut(Q) of strictly increasing bijections of Q (with the pw.
convergence topology) is extremely amenable (V. Pestov);

3 The group of isometries of the Urysohn space with its pw. conv. top.
(Pestov);
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Topological Dynamics Extreme Amenability, Universal Minimal Flows

4 The group of linear isometries of the Lebesgue spaces Lp[0, 1],
1 ≤ p 6= 2 <∞, with the SOT (Giordano-Pestov);

5 The Automorphism group of the ordered countable atomless boolean
algebra B is extremely amenable (Kechris-Pestov-Todorcevic);

6 The Automorphism group of the ordered universal F-vector space F<∞,
F finite field, is extremely amenable (K-P-T);

7 The group of linear isometries of the Gurarij space G
(Bartosova-LA-Lupini-Mbombo).
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Topological Dynamics Extreme Amenability, Universal Minimal Flows

Examples of universal minimal flows

1 M(Homeo[0, 1]) = {−1, 1} (orientations of an homeomorphism
f : [0, 1]→ [0, 1] (Pestov);

2 M(Aut(B)) = Canonical Linear Orderings on B (K-P-T);

3 M(Aut(F<∞)) = Canonical Linear Orderings on F<∞ (K-P-T), for any
finite field F;

4 M(Aut(P)) = P, where P is the Poulsen simplex, the unique compact
metrizable Choquet simplex whose extreme points are dense
(B-LA-L-M).
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Topological Dynamics UMF vs EA; how to prove EA

UMF and EA

Proposition (Ben Yaacov-Melleray-Tsankov)
Suppose that G is a polish group (i.e. separable and complete metrizable
topological group). If the umf M(G) is metrizable, then there is an EA
subgroup H of G such that M(G) is the completion of G/H.
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Topological Dynamics UMF vs EA; how to prove EA

Proving that a group is EA

Up to now there are two ways to prove the extreme amenability of a group:

1 Intrinsically by proving that G is Lévy (concentration of measure);

2 by representing G as the automorphims group Aut(X) of a metric Fraïssé
structure X, and then using the KPT correspondence.

While the first seems a restricted approach, the second is general, as proved
by Melleray.
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Topological Dynamics UMF vs EA; how to prove EA

Aut(X) is extremely amenable

X Method
H Lévy
Q KPT
U Lévy and KPT
Lp[0, 1] Lévy and KPT
B KPT
F<∞ KPT
G KPT

Table: Methods to prove extreme amenability

J. Lopez-Abad (UNED) Eaag WS2019 14 / 66



(Metric) Fraïssé Theory First order structures

All examples are “universal” structures

All the previous examples are universal (metric) structures with a very strong
transitivity property.

Definition (Ultrahomogeneity)
A first order structureM is called ultrahomogeneous when for every finitely
generated substructureN ofM and every embedding φ : N →M there is an
automorphism g ∈ Aut(M) such that g � N = φ.

Fraïssé theory tells that countable ultrahomogeneous structures are the Fraïssé
limits of Fraïssé classes (hereditary property, joint embedding property, and
amalgamation property).
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(Metric) Fraïssé Theory First order structures

Examples

1 (Q, <) is the Fraïssé limit of all finite total orderings;

2 The countable atomless boolean algebra B is the Fraïssé limit of all finite
boolean algebras;

3 F<∞ is the Fraïssé limit of all finite dimensional F-vector spaces, for a
finite field F;

4 The Rational Urysohn space UQ is the Fraïssé limit of all finite metric
spaces with rational distances.
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(Metric) Fraïssé Theory First order structures

Proposition (Representation Theorem I)
Every closed subgroup G ≤ S∞ is the automorphism group of a
ultrahomogeneous first order structure.

Proof.
For suppose that G is a closed subgroup of S∞; For each k ∈ N, consider the
canonical action G y Nk, g · (aj)j<k := (g(aj))j<k, and let {O(k)

j }j∈Ik be the
enumeration of the corresponding orbits. Let L be the relational language,
{R(k)

j : k ∈ N, j ∈ Ik}, each R(k)
j being a k-ari relational symbol. Now N is an

R-structureM naturally,
(R(k)

j )M := O(k)
j .

It is easy to see thatM is ultrahomogeneous, and that G ⊆ Aut(M) is dense
in G, so, equal to G.
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(Metric) Fraïssé Theory KPT correspondence; Structural Ramsey Properties

Kechris-Pestov-Todorcevic correspondence

Given two first order structures of the same sort A,B, let emb(A,B) be the
collection of all 1-1 morphisms h : A→ B.

Definition (Structural Ramsey Property)
Let F be a class of finitely generated first order structures of the same sort.
The class F has the Structural Ramsey Property (RP) if for every A,B ∈ F
and every r ∈ N there is C ∈ F such that for every coloring
c : emb(A,C)→ r there is % ∈ emb(B,C) such that % ◦ emb(A,B) is
c-monochromatic.

Theorem (Kechris-Pestov-Todorcevic)
Let M be a countable ultrahomogeneous structure. TFAE:

1 Aut(M) is extremely amenable;

2 Age(M) has the Ramsey property (RP).
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(Metric) Fraïssé Theory Structural Ramsey Theorems

The Classical Ramsey Theorem

We will use the Von Neumann notation for an integer n := {0, 1, . . . , n− 1}.
Recall that [A]k is the collection of all subsets of A of cardinality k.

Proposition (F. P. Ramsey)
For every k,m, r ∈ N there is n ≥ k such that every r-coloring

c : [n]k → r

has a monochromatic set of the form [A]k for some A ⊆ n of cardinality m.
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(Metric) Fraïssé Theory Structural Ramsey Theorems

This is equivalent to the following: Let emb(k, n) be the collection of all
injections f : k→ n (so, no structure).

Proposition (RP of finite linear orderings)
For every k,m, r ∈ N there is n ≥ k such that every r-coloring
c : emb(k, n)→ r has a monochromatic set of the form % ◦ emb(k,m) for
some % ∈ emb(m, n); consequently,

1 The class of finite linear orderings has the Ramsey property, and

2 Aut(Q, <) is extremely amenable.
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(Metric) Fraïssé Theory Structural Ramsey Theorems

The Dual Ramsey Theorem (DRT)

Let Ed
n be the set of all partitions of n into d-many pieces. Given a partition

Q ∈ Em
n , and d ≤ m, let 〈Q〉d be set of all partitions P ∈ Ed

n coarser than Q.

Theorem (Dual Ramsey by Graham and Rothschild)

For every d,m and r there exists n such that for every coloring c : Ed
n → r

there exists Q ∈ Em
n such that c � 〈Q〉d is constant.

J. Lopez-Abad (UNED) Eaag WS2019 21 / 66



(Metric) Fraïssé Theory Structural Ramsey Theorems

The Dual Ramsey Theorem (DRT)

Let Ed
n be the set of all partitions of n into d-many pieces. Given a partition

Q ∈ Em
n , and d ≤ m, let 〈Q〉d be set of all partitions P ∈ Ed

n coarser than Q.

Theorem (Dual Ramsey by Graham and Rothschild)

For every d,m and r there exists n such that for every coloring c : Ed
n → r

there exists Q ∈ Em
n such that c � 〈Q〉d is constant.

J. Lopez-Abad (UNED) Eaag WS2019 21 / 66



(Metric) Fraïssé Theory Structural Ramsey Theorems

By a simple dual argument, this is equivalent to the following. Given
k, n ∈ N, we consider P(k) and P(n) as boolean algebras, and then let
emb(k, n) be the collection of all ordered boolean embeddings
f : P(k)→ P(n), i.e., such that min f ({i} < min f ({j}) for every i < j < k.
The dual Ramsey theorem can be restated as follows.

Theorem (DR, Boolean version)
For every k,m and r in N there is some n ∈ N such that every r-coloring
c : emb(P(k),P(n))→ r has a monochromatic set of the form
% ◦ emb(P(k),P(m)) for some % ∈ emb(P(m),P(n)); consequently,

1 The class of finite, canonically ordered, boolean algebras has the
Ramsey property, and

2 The automorphism group of the canonically ordered countable atomless
boolean algebra is extremely amenable.
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(Metric) Fraïssé Theory Metric structures

Metric structures

The rest of the examples are also groups of algebraic automorphisms that are
in addition isometries. First order structures are the discrete version of metric
structuresM = (M, (FM)F∈F , (RM)R∈F ): Roughly speaking:

1 d is a bounded and complete metric on M;

2 n-ari function symbols F are interpreted as uniformly continuous
functions FM : Mn → M;

3 n-ari relational symbols R are interpreted as uniformly continuous
functions RM : Mn → I, I ⊆ R a bounded interval.
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(Metric) Fraïssé Theory Metric structures

Metric structures

For more information: “Model theory for metric structures” by Ben
Yaacov-Berenstein-Henson-Usvyatsov) Metric structures are

1 metric spaces,

2 normed spaces,

3 euclidean spaces,

4 operator spaces, etc.
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(Metric) Fraïssé Theory Metric structures

Approximate Ultrahomogeneity

Definition (Approximate Ultrahomogeneity)
A metric structureM is called approximate ultrahomogeneous when for every
finitely generated substructure N ofM and every embedding φ : N →M
there is an automorphism g ∈ Aut(M) such that d̂(g � N, φ) < ε.

Metric Fraïssé theory tells that countable ultrahomogeneous structures are the
Fraïssé limits of Fraïssé classes (hereditary property, joint embedding
property, and near amalgamation property).
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(Metric) Fraïssé Theory Metric structures

Examples

1 H is the Fraïssé limit of all finite dimensional euclidean normed spaces;

2 The Gurarij space G (the unique separable ultrahomogeneous Banach
space) is the Fraïssé limit of all finite dimensional normed spaces.

Proposition (Representation Theorem II; Melleray)
Every polish group G is the automorphism group of an approximate
ultrahomogeneous metric structure.
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(Metric) Fraïssé Theory Metric structures

Metric KPT correspondence

Theorem (Melleray-Tsankov)
Let M be a metric approximately ultrahomogeneous structure. TFAE:

1 Aut(M) is extremely amenable;

2 Age(M) has the approximate Ramsey property (ARP).
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(Metric) Fraïssé Theory Metric structures

Résumé

• WhenM is a ultrahomogeneous structure, the extreme amenability of
Aut(M) is determined by a combinatorial property of Age(M):

The
Ramsey property

• Same whenM is a metric structure.
• Ultrahomogeneous structures are not so uncommon. every polish group

is the automorphism group of some approx. uh metric structure
(although artificial).
• Several known Ramsey properties correspond to the structural Ramsey

property of Age(M) for some (approx.) ultrahomogeneous structureM
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Résumé
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Q as order, B<∞, F<∞, U
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An example of metric structures:
Banach spaces
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Outline

3 Fraïssé Banach spaces and Fraïssé Correspondence
Fraïssé correspondence
Fraïssé Banach spaces and ultrapowers

4 Approximate Ramsey Properties

5 KPT correspondence for Banach spaces
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Fraïssé Banach spaces and Fraïssé Correspondence

Fraïssé Banach spaces

Definition

Let E be an infinite dimensional Banach space, and let G � Age(E).

• E is G-homogeneous (G−H) when for every X ∈ G and every and every
γ, η ∈ Emb(X,E) there is some g ∈ Iso(E) such that g ◦ γ = η; in other
words, when for each X ∈ G, the natural action Iso(E) y Emb(X,E) by
composition is transitive.

• E is is called approximately G-homogeneous (AGH) when for every
X ∈ G and every ε > 0 the natural action by composition
Iso(E) y Emb(X,E) is ε-transitive, that is, whenever γ, η ∈ Emb(X,E)
there is g ∈ Iso(E) such that ‖g ◦ γ − η‖ < ε.
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there is some g ∈ Iso(E) such that g ◦ γ = η; in
other words, when for each X ∈ G, the natural action
Iso(E) y Emb(X,E) by composition is transitive.

• E is is called approximately G-homogeneous (AGH) when for every
X ∈ G and every ε > 0 the natural action by composition
Iso(E) y Emb(X,E) is ε-transitive, that is, whenever γ, η ∈ Emb(X,E)
there is g ∈ Iso(E) such that ‖g ◦ γ − η‖ < ε.
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Fraïssé Banach spaces and Fraïssé Correspondence

Fraïssé Banach spaces

Definition
• E is is called weak G-Fraïssé when for every X ∈ G and every ε > 0

there is δ ≥ 0 such that Iso(E) y Embδ(X,E) is ε-transitive.

• E is G-Fraïssé when for every k ∈ N, and ε > 0 there is δ ≥ 0 such that
Iso(E) y Embδ(X,E) is ε-transitive for every X ∈ Gk
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Fraïssé Banach spaces

Definition
• E is is called weak G-Fraïssé when for every X ∈ G and every ε > 0

there is δ ≥ 0 such that Iso(E) y Embδ(X,E) is ε-transitive.
• E is G-Fraïssé when for every k ∈ N, and ε > 0 there is δ ≥ 0 such that

Iso(E) y Embδ(X,E) is ε-transitive for every X ∈ Gk

When G = Age(E), then we will use ultrahomogeneus (uH), approximately
ultrahomogeneous (AuH+), weak Fraïssé and Fraïssé for the corresponding
G-homogeneities.
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Fraïssé Banach spaces and Fraïssé Correspondence

Examples

• A Hilbert space is obviously (uH), but also is a Fraïssé Banach space.
• The Gurarij space G is Fraïssé but not (uH).
• For every 1 ≤ p <∞ the space Lp[0, 1] is {`n

p}n-Fraïssé . In fact, Lp[0, 1]
is the Fraïssé limit of {`n

p}n.
• Assume p ∈ 2N, p ≥ 4. For any C ≥ 1 and δ ≥ 0, there are isometric

E,F ∈ Age(Lp(0, 1)) such that for any bounded linear mapping
T : Lp(0, 1)→ Lp(0, 1), if T � E ∈ Embδ(E,F), then ‖T‖ ≥ C.
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Fraïssé Banach spaces and Fraïssé Correspondence

E-Kadets

Recall the gap or opening metric on Agen(E) is defined by

ΛE(X,Y) := max

{
max
x∈BX

min
y∈BY
‖x− y‖E,max

y∈BY
min
x∈BX
‖x− y‖E

}
;

in other words, ΛE(X,Y) is the ‖ · ‖E-Hausdorff distance between the unit
balls of X and Y .

This induces the following Gromov-Hausdorff function, E-Kadets on
Agen(E)2, defined as

γE(X,Y) := inf{ΛE(X0,Y0) : X0,Y0 ∈ Agen(E), X0 ≡ X, Y0 ≡ Y}.
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Fraïssé Banach spaces and Fraïssé Correspondence

When E is universal γE is the original Kadets pseudometric, although in
general γE may not be a pseudometric.

Proposition
When E is approximately G-ultrahomogeneous, γE is a pseudometric on G.

Proof.
Wlog, we assume that G ⊆ Age(E). Then,
γE(X,Y) = infg∈Iso(E) ΛE(gX,Y)
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Fraïssé Banach spaces and Fraïssé Correspondence

Banach-Mazur

The Banach-Mazur pseudometric on Agen(E):

dBM(X,Y) := log( inf
T:X→Y

‖T‖ · ‖T−1‖)

where the infimum runs over all isomorphisms T : X → Y . It is well-known
that dBM defines a pre-compact topology on Agen(E); that is, every sequence
in Agen(E) has a dBM-convergent subsequence, not necessarily to an element
of Agen(E).

J. Lopez-Abad (UNED) Eaag WS2019 36 / 66



Fraïssé Banach spaces and Fraïssé Correspondence

Theorem

The following are equivalent for a Banach space E and G � Age(E).

• E is G-Fraïssé.
• E is weak G-Fraïssé, GE is ΛE-closed in Age(E), and dBM and γE are

uniformly equivalent on Gk for every k.
• E is weak G-Fraïssé and G is dBM-compact.
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Theorem

The following are equivalent for a Banach space E and G � Age(E).
• E is G-Fraïssé.
• E is weak G-Fraïssé, GE is ΛE-closed in Age(E), and dBM and γE are

uniformly equivalent on Gk for every k.
• E is weak G-Fraïssé and G is dBM-compact.

It follows from this that the Hilbert and the Gurarij spaces are very special
Fraïssé spaces: Recall that a Banach space Y is finitely representable in X if
Agek(Y) is included in the dBM-closure Agek(X)

BM
of Agek(X) for every k.
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Fraïssé Banach spaces and Fraïssé Correspondence

Proposition
Let E be a Fraïssé Banach space. The following are equivalent for a
separable Banach space Y.

1 X is finitely representable on E.

2 X can be isometrically embedded into E.

3 `2 is the minimal separable Fraïssé Banach space.
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Fraïssé Banach spaces and Fraïssé Correspondence Fraïssé correspondence

G-Fraïssé spaces are locally determined

Definition
Given a family G of finite dimensional spaces, let [G] be the class of all
separable Banach spaces X such that there is an ⊆-increasing sequence (Xn)n

in GX whose union is dense in X.

Theorem

Suppose that X and Y are G-Fraïssé Banach spaces, with
G � Age(X),Age(Y) and X ∈ [G]. The following are equivalent.

1 Y ∈ [G].

2 X is isometric to Y.
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Fraïssé Banach spaces and Fraïssé Correspondence Fraïssé correspondence

Amalgamation and Fraïssé classes

Definition
Let G be a class of finite dimensional spaces.

• G is an amalgamation class when {0} ∈ G and for every ε > 0 and every
k there is δ ≥ 0 such that if X ∈ Gk, Y,Z ∈ G and γ ∈ Embδ(X,Y),
η ∈ Embδ(X,Z), then there is H ∈ G and isometries i : Y → H and
j : Z → H such that ‖i ◦ γ − j ◦ η‖ ≤ ε.

• G is a Fraïssé class when it is hereditary amalgamation class.
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it follows that G has the Joint embedding property: For every
X,Y ∈ G there is Z ∈ G such that Emb(X,Z),Emb(Y,Z) 6= ∅.

• G is a Fraïssé class when it is hereditary amalgamation class.

J. Lopez-Abad (UNED) Eaag WS2019 40 / 66



Fraïssé Banach spaces and Fraïssé Correspondence Fraïssé correspondence

Amalgamation and Fraïssé classes

Definition
Let G be a class of finite dimensional spaces.
• G is an amalgamation class when {0} ∈ G and for every ε > 0 and every

k there is δ ≥ 0 such that if X ∈ Gk, Y,Z ∈ G and γ ∈ Embδ(X,Y),
η ∈ Embδ(X,Z), then there is H ∈ G and isometries i : Y → H and
j : Z → H such that ‖i ◦ γ − j ◦ η‖ ≤ ε.

• G is a Fraïssé class when it is hereditary amalgamation class.

J. Lopez-Abad (UNED) Eaag WS2019 40 / 66
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Fraïssé correspondence

Theorem

Suppose that G is an amalgamation class. Then there is a unique separable
G-Fraïssé Banach space E such that E ∈ [G], called the Fraïssé limit of G and
denoted by FlimG.

Corollary (Fraïssé correspondence)
The following are equivalent for a class G of finite dimensional Banach
spaces:

1 G is a Fraïssé class;

2 G ≡ Age(E) of a unique separable Fraïssé Banach space
E = FlimG.
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Fraïssé Banach spaces and Fraïssé Correspondence Fraïssé correspondence

Examples

• `2 = Flim{`n
2}n,

• Lp(0, 1) = Flim{`n
p}n.

• Lp(0, 1) = Flim Age(Lp(0, 1)) for p 6= 4, 6, 8, . . . .
• G = Flim{`n

∞}n.
• G = Flim Age(C[0, 1]).
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Fraïssé Banach spaces and Fraïssé Correspondence Fraïssé Banach spaces and ultrapowers

Fraïssé and ultrapowers

Being Fraïssé is an ultra property.

Recall that given a Banach space E, and
given a non-principal ultrafilter U on N,

• we write EU to denote the ultrapower EN/U .
• We denote by Iso(E)U the subgroup of Iso(EU ) consisting of all

isometries of the ultrapower EU of the form [(xn)n]U 7→ [(gn(xn))n]U for
some sequence (gn)n ∈ Iso(E)N.
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given a non-principal ultrafilter U on N,
• we write EU to denote the ultrapower EN/U .
• We denote by Iso(E)U the subgroup of Iso(EU ) consisting of all

isometries of the ultrapower EU of the form [(xn)n]U 7→ [(gn(xn))n]U for
some sequence (gn)n ∈ Iso(E)N.

It is well known that Age(EU ) ≡ Age(E)
BM

.
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Fraïssé Banach spaces and Fraïssé Correspondence Fraïssé Banach spaces and ultrapowers

Proposition
Let E be a Banach space, and let U be a non-principal ultrafilter on N. The
following are equivalent.

1 E is Fraïssé.

2 EU is Fraïssé and (Iso(E))U is dense in Iso(EU ) with respect to the SOT.

3 For every X ∈ Age(EU ) one has that (Iso(E))U y Emb(X,EU ) is
approximately transitive.

4 For every X ∈ Age(EU ) one has that (Iso(E))U y Emb(X,EU ) is
transitive.

5 For every separable X ⊂ EU one has that (Iso(E))U y Emb(X,EU ) is
transitive.

6 EU is (uH) and (Iso(E))U is dense in Iso(EU ) with respect to the SOT.
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5 For every separable X ⊂ EU one has that (Iso(E))U y Emb(X,EU ) is
transitive.

6 EU is (uH) and (Iso(E))U is dense in Iso(EU ) with respect to the SOT.

In particular, it follows that when E is Fraïssé, its ultrapowers is Fraïssé and
ultrahomogeneous.
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Approximate Ramsey Properties

ARP for finite dimensional normed spaces

Given two Banach spaces X and Y , and δ ≥ 0, let Embδ(X,Y) be the
collection of all linear 1-1 bounded functions T : X → Y such that
‖T‖, ‖T−1‖ ≤ 1 + δ.

Definition
A collection F of finite dimensional normed spaces has the Approximate
Ramsey Property (ARP) when for every F,G ∈ F and ε > 0 there exists
H ∈ F such that every continuous coloring c of Emb(F,H) ε-stabilizes in
% ◦ Emb(F,G) for some % ∈ Emb(G,H), that is,

osc(c � % ◦ Emb(F,G)) < ε.
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Approximate Ramsey Properties

Comparing different Ramsey Propeties

Definition
A collection F of finite dimensional normed spaces has the Discrete (ARP)
when for every F,G ∈ F , ε > 0 and r ∈ N there exists H ∈ F such that every
coloring c of Emb(F,H)→ r has an ε-monochromatic set of the form
% ◦ Emb(F,G) for some % ∈ Emb(G,H).
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A is ε-monochromatic when there is some j < r such that A ⊆
(c−1(j))ε.
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when for every F,G ∈ F , ε > 0 and r ∈ N there exists H ∈ F such that every
coloring c of Emb(F,H)→ r has an ε-monochromatic set of the form
% ◦ Emb(F,G) for some % ∈ Emb(G,H).

Proposition
F has the (ARP) if and only if F has the discrete (ARP).
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KPT correspondence for Banach spaces

Theorem (KPT global)
Suppose that E is approximately ultrahomogeneous. The following are
equivalent:

a The group Iso(E) with its strong operator topology is extremely
amenable; that is, every continuous action of Iso(E) on a compact space
has a fixed point.

b Age(E) has the (ARP).

Theorem (KPT Local)
Suppose that G is an amalgamation class. The following are equivalent:

a The group Iso(FlimG) is extremely amenable.

b G has the (ARP).
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KPT correspondence for Banach spaces

Step I

Proposition
Let G be a topological group, Iso(E) y K, and suppose that Iso(E) · p is
dense K. The following are equivalent.

i there is a fixed point for the action Iso(E) y K.

ii For every entourage U in K and every finite set F ⊆ Iso(E) there is some
g ∈ Iso(E) such that Fg · p is U-small, that is for every f0, f1 ∈ F one has
that (f0g · p, f1g · p) ∈ U.
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KPT correspondence for Banach spaces

Proof.

i implies ii For suppose that q ∈ K is a fixed point; Fix F ⊆ G finite
and an entourage U; let V be an entourage such that V ◦ V ⊆ U. Using
that g· : K → K is uniformly continuous, we find an entourage W such that
gW ⊆ V for every g ∈ F. Let h ∈ G be such that (h · p, q) ∈ W. It follows that
(gh · p, q) = (gh · p, gq) ∈ V for all g ∈ F; hence (gh · p, g′h · p) ∈ U.
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KPT correspondence for Banach spaces

Proof.

ii implies i For every finite set F and entourage U choose gF,U ∈ G such
that (F ∪ {e}) · gF,Up is U-small, hence fgFp ∈ U[gF,Up] for every F and U.
Then any accumulation point q of {gF,U}F,U is a fixed point.
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KPT correspondence for Banach spaces

(ARP) of Age(E) implies the EA of Iso(E)

1 Fix Iso(E) y K, p ∈ K, an entourage U and a finite set F ⊆ Iso(E). Set
H := F−1.

2 let V be an entourage such that V ◦ V ◦ V ◦ V ⊆ U.

3 Let (Xn)n be an increasing sequence of finite dimensional subspaces of E
whose union is dense in E.

4 For each n, let dn be the pseudometric on Iso(E),
dn(g, h) := ‖g � Xn − h � Xn‖.

5 Since the sequence of pseudometrics (dn)n defines the SOT on Iso(E)
and since G→ K, g 7→ g−1p is uniformly continuous there is some
n ∈ N and δ > 0 such that dn(g, h) ≤ δ implies that
(g−1 · p, h−1 · p) ∈ V .
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KPT correspondence for Banach spaces

6 Let Y :=
∑

g∈H gXn.

7 Let {xj}j<r ⊆ K be such that K =
⋃

j<r V[xj], where
V[x] := {y ∈ K : (x, y) ∈ V}.

8 We apply the (ARP) of Age(E) to Xn, Y , δ/3 and r to find the
corresponding Z.

9 We define the coloring c : Emb(Xn,Z)→ r for γ ∈ Emb(Xn,Z)→ r by
choosing g ∈ Iso(E) such that ‖g � Y − γ‖ ≤ δ/3, and then by declaring
c(γ) = j if j is (the first) such that g−1p ∈ V[xj].

10 By the Ramsey property of Z, we can find % ∈ Emb(Y,Z) and j < r such
that, in particular, for every η ∈ Emb(Xn,Y) there is some gη ∈ Iso(E)
such that (gη)−1 · p ∈ V[xj] and ‖% ◦ η − gη‖ ≤ 2δ/3.

11 Choose h ∈ Iso(E) such that ‖h � Y − %‖ ≤ δ/3.
12 Then, for every f ∈ H, setting η := f � Xn, then dn(h ◦ f , gη) ≤ δ, and

g−1
η · p ∈ V[xj].

13 Consequently, (f0 ◦ h−1 · p, f1 ◦ h−1 · p) ∈ U for every f0, f1 ∈ F, as
desired.
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KPT correspondence for Banach spaces

EA of Iso(E) implies the (ARP) of Age(E)

For the next claim we need some terminology.

• Given two metric spaces (A, dA) and (B, dB), let Lip(A,B) be the
collection of 1-Lipschitz mappings from A to B.
• When A is compact, we endow it with the uniform metric

d(c, d) := supa∈A dB(c(a), d(a)). Observe that when B is also compact,
(Lip(A,B), d) is also compact.
• For each W ∈ Age(E), let 〈W〉 := {X ∈ Age(E) : W ⊆ X}. Note that
{〈W}W∈Age(E) has the finite intersection property. Let U be a
non-principal ultrafilter on Age(E) containing all 〈W〉.
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KPT correspondence for Banach spaces

• Define the ultraproduct
LipU (Emb(X,E), [0, 1]) := (

∏
X⊆Y∈Age(E) Lip(Emb(X,Y), [0, 1])/ ∼U ,

where (cY)Y ∼U (dY)Y if and only if for every
γ0, . . . , γn−1 ∈ Emb(X,E), and every ε > 0,
{Y ∈ 〈

∑
j<n Imγj〉 : |maxj<n |cY(γj)− dY(γj)| ≤ ε} ∈ U .

• We consider the canonical action Iso(E) y Lip(Emb(X,E), [0, 1],
(g · c)(γ) := c(g ◦ γ), and the (algebraic) action
Iso(E) y LipU (Emb(X,E), [0, 1]), g · [(cY)Y ]U = [(dY)Y ]U , where
dY(γ) := cg(Y)(g ◦ γ).
• Define Φ : Lip(Emb(X,E), [0, 1]→ LipU (Emb(X,E), [0, 1]),

Φ(c) = (cY)Y , where cY(γ) := c(γ).
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KPT correspondence for Banach spaces

Proposition
Φ is a Iso(E)-bijection.

Proof.
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Proposition
Φ is a Iso(E)-bijection.

Proof.
Suppose that Φ(c) = [(cY)Y ]U and Φ(g · c) = [(dY)Y ]U . Then for each Y
and γ ∈ Emb(X,Y), cY(γ) = c(γ) and dY(γ) = (g · c)(γ) = c(g ◦ γ), so
g · [(cY)Y ]U = [(dY)Y ]U . It is easy to see that Φ is 1-1.
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KPT correspondence for Banach spaces

Proposition
Φ is a Iso(E)-bijection.

Proof.
Φ is onto: Suppose now that Φ(c) = Φ(d). Let [(cY)Y ]U , and let γ ∈
Emb(X,E). Then the numerical sequence (cY(γ))U is bounded, so the U-limit
c(γ) := limY→U cY(γ) exists. It is ease to see that c ∈ Lip(Emb(X,E), [0, 1])
and that Φ(c) = [(cY)Y ]U .
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KPT correspondence for Banach spaces

1 Suppose now that Iso(E) is extremely amenable, fix X,Y ∈ Age(E) and
ε > 0.

2 We prove that the collection of Z ∈ Age(E) such that for every
c ∈ Lip(Emb(X,Z), [0, 1]) there is γ ∈ Emb(Y,Z) such that
Osc(c � Emb(X,Y)) ≤ ε belongs to U .

3 Equivalently, for every (cZ)Z ∈
∏

Z∈Age(E) Lip(Emb(X,Z), [0, 1]) one
has that the set of Z ∈ Age(E) such that there is γ ∈ Emb(Y,Z) with
Osc(cZ � Emb(X,Y)) ≤ ε belongs to U .

4 Since Φ is a Iso(E)-bijection, this is equivalent to prove that given
c ∈ Emb(X,E)→ [0, 1] there is some g ∈ Iso(E) such that
Osc(c � g ◦ Emb(X,Y)) ≤ ε.
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KPT correspondence for Banach spaces

1 We consider the action Iso(E) y Iso(E) · c.

2 Let d ∈ Iso(E) · c be a fixed point, that is, g · d = d for every g ∈ Iso(E).

3 Since Emb(X,Y) is compact, we can find g ∈ Iso(E) such that
supγ∈Emb(X,Y) |g · c(γ)− d(γ)| ≤ ε/3. Let us see that
Osc(c � g ◦ Emb(X,Y)) ≤ ε.

4 For suppose that γ, η ∈ Emb(X,Y); Let h ∈ Iso(E) be such that
‖h ◦ γ − η‖ ≤ ε/3.

5 It follows that for γ, η ∈ Emb(X,Y),
|d(γ)− d(η)| = |d(h ◦ γ)− d(η)| ≤ ε/3, and
|c(g ◦ γ)− c(g ◦ η)| ≤ 2ε/3 + |d(γ)− d(η)| ≤ ε.
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KPT correspondence for Banach spaces

Résumé

• Fraïssé spaces are those spaces for which Iso(E) y Embδ(X,E)
ε-transitively, and the dependance

(X, ε) δ

is only on dim X.

• There is a natural notion of Fraïssé G-space, Fraïssé G-limit FlimG, and
a Fraïssé correspondence.
• Concerning ultrapowers, E is Fraïssé if and only if the subgroup

(Iso(E))U of Iso(EU ) acts transitively on each Emb(X,EU ) for every
separable (possibly infinite dimensional X ⊆ EU ).
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Three examples
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Outline

6 Gurarij space
{`n
∞}n have have the (ARP)

The ARP of Finite dimensional Normed spaces
The ARP of Finite dimensional Normed spaces

7 Lp-spaces
Lp (sometimes) is a Fraïssé space
{`n

p} have the (ARP)
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Gurarij space {`n
∞}n have have the (ARP)
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Gurarij space The ARP of Finite dimensional Normed spaces

First application of metric KPT correspondence

Theorem (Bartošová-LA-Lupini-Mbombo)
The following classes of f.d. normed spaces have the (ARP):

1 {`n
∞}n≥0;

2 The class of finite dimensional polyhedral spaces;

3 The class of all finite dimensional normed spaces.

There are also noncommutative analogues. ****** falta **** mention
M-spaces.
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1 Aut(G);

2 Autp(P) for every extreme point p of P;

We also have

4 The umf of Aut (P) is the canonical action Aut(P) y P;
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Gurarij space The ARP of Finite dimensional Normed spaces
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Lp-spaces Lp (sometimes) is a Fraïssé space
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Lp-spaces {`n
p} have the (ARP)
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